Recitation 7: Laplace transform

Lecturer: Chenlin Gu

Exercise 1. Write down the definition of improper integral and explain it in the $\varepsilon-\delta$ language.
Exercise 2. Determine whether the integral converges or diverges:

1. $\int_{0}^{\infty}\left(t^{2}+1\right)^{-1} d t$;
2. $\int_{0}^{\infty} t^{n} e^{-t} d t$;
3. $\int_{0}^{\infty} \frac{\sin (t)}{t} d t$;
4. $\int_{1}^{\infty} \frac{1}{\sqrt{t}} d t$.

Exercise 3. Calculate the Laplace transform offollowing functions:

1. $f(t)=\sin (b t)$;
2. $f(t)=\cos (b t)$;
3. $f(t)=e^{a t} \sin (b t)$;
4. $f(t)=e^{a t} \cos (b t)$.

Exercise 4. Find the inverse Laplace transform of following functions:

1. $F(s)=\frac{3}{s^{2}+4}$;
2. $F(s)=\frac{4}{(s-1)^{3}}$;
3. $F(s)=\frac{2}{s^{2}+3 s-4}$.

Exercise 5. Use Laplace transform to find the solution of initial value problem:

1. $y^{\prime \prime}-y^{\prime}-6 y=0, \quad y(0)=1, y^{\prime}(0)=-1$;
2. $y^{\prime \prime}+\omega^{2} y=\cos (2 t), \quad \omega^{2} \neq 4, y(0)=1, y^{\prime}(0)=0$.
